First Derivative $\frac{d y}{d x}$ (talks about slope)

Decreasing:

This is where the slope is negative which means less than zero. Imagine someone sliding down a hill.

$$
\text { solve } \frac{d y}{d x}<0
$$

Important: Remember that when we solve an inequality that is a quadratic or higher we must use the sign change test or graph! We cannot just guess the signs!

Max/Min (Turning/Stationary Points):
This is where increasing changes to decreasing or vice versa. The slope is neither positive, nor negative, it is zero!

To verify whether a max or min:
Way 1: Plug into $\frac{d^{2} y}{d x^{2}}$
Plug the x value found into $\frac{d^{2} y}{d x^{2}}$ and if

$$
\begin{array}{|l|}
\hline \frac{d^{2} y}{d x^{2}}>0 \Rightarrow \min \\
\frac{d^{2} y}{d x^{2}}<0 \Rightarrow \max \\
\hline
\end{array}
$$

Way 2: Sign change number line test for $\frac{d y}{d x}$
We plug in an x value just below and just above the x value found into $\frac{d y}{d x}$. If $\frac{d y}{d x}$ changes sign from negative $(-)$ to $(+)$ then min and if $\frac{d y}{d x}$ changes from positive (+) to negative (-) then max.

Second Derivative $\frac{d^{2} y}{d x^{2}}$ (talks about concavity)

Increasing:

This is where the slope is positive which means greater than zero. Imagine someone climbing up a hill.

$$
\text { solve } \frac{d y}{d x}>0
$$

point of inflection $\frac{d^{2} y}{d^{2}}=0$
Remember that when solving an
inequality (increasing, decreasing
concave up, concave down) we
solve it as an equality first and
then use the sign change test
(number line) or graph to deal
(convex) $\frac{d^{2} y>0}{d x^{2}}$
with the inequality part. with the inequality part.
solve $\frac{d y}{d x}=0$ and check $\frac{d^{2} y}{d^{2} x}$

Concave Down Looks Like:

Example to tie all concepts together:

$$
y=3 x^{5}-5 x^{3}
$$

Find the

i.	Max and min points coordinates and state which is which
ii.	Regions where the function is increasing
iii.	Points on inflection
iv.	Regions where the function is concave down

Answer

i.

Maximum/Minimum
$\mathrm{Max} / \mathrm{min}$ when $\frac{d y}{d x}=0$

$$
\begin{gathered}
\frac{d y}{d x}=15 x^{4}-15 x^{2} \\
15 x^{4}-15 x^{2}=0 \\
x^{4}-x^{2}=0
\end{gathered}
$$

We factorise in order to solve (see my solving notes or cheat sheet if you struggle with solving equations such as quadratics and above)

Set each bracket equal to 0

$$
\begin{gathered}
x^{2}\left(x^{2}-1\right)=0 \\
x^{2}=0, x^{2}-1=0 \\
x^{2}=0, x^{2}=1
\end{gathered}
$$

This gives the solutions

$$
x=0, x=1, x=-1
$$

Let's classify which are min and which are max. There are 2 ways to do this.

Way 1: sign change test on $\frac{d y}{d x}$

Plot all the solutions on a regular number line and plug values in between each set of numbers (each region) into $x^{2}\left(x^{2}-1\right)$

Note the signs of your answers

The signs form the slopes. Check whether the slope lines form a min or max shape

$$
x=-1 \text { is a max, } x=1 \text { is a min and } x=0 \text { is neither }
$$

Way 2: Plug x found into $\frac{d^{2} y}{d x^{2}}$ (quickest and easiest method)
$\frac{d^{2} y}{d^{2} x}=60 x^{3}-30 x$

Plug $x=0, x=-1$ and $x=1$ into $\frac{d^{2} y}{d^{2} x}=60 x^{3}-30 x$
when $x=0$:

$$
\frac{d^{2} y}{d^{2} x}=60(0)^{3}-30(0)=0 \therefore \text { neither }
$$

when $x=-1$

$$
\frac{d^{2} y}{d^{2} x}=60(-1)^{3}-30(-1)=-30<0 \therefore \max
$$

when $x=1$

$$
\frac{d^{2} y}{d^{2} x}=60(1)^{3}-30(1)=30>0 \therefore \min
$$

We have the x coorindates. Let's find the entire coordinate.
When $x=0$

$$
\begin{gathered}
y=3(0)^{5}-5(0)^{3}=0 \\
y=3(1)^{5}-5(1)^{3}=-2 \\
y-3(-1)^{5}-5(-1)^{3}=2 \\
(1,-2) \text { min } \\
(-1,2) \text { max } \\
(0,0) \text { neither }
\end{gathered}
$$

When $x=1$
When $x=-1$
ii.

Increasing
Increasing when $\frac{d y}{d x}>0$
We solve $\frac{d y}{d x}=0$ and then use a number line to solve the inequality
We already have the points where $\frac{d y}{d x}=0$ from part i .
We put these on a number line and check the signs

Increasing when $x<-1$ and $0<x<1$
iii.

Points of inflection

Points of inflection when $\frac{d^{2} y}{d x^{2}}=0$

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}=60 x^{3}-30 x \\
60 x^{3}-30 x=0
\end{gathered}
$$

We factorise in order to solve

$$
30 x\left(2 x^{2}-1\right)=0
$$

Set each bracket equal to 0

$$
\begin{gathered}
30 x=0,2 x^{2}-1=0 \\
30 x=0, x^{2}=\frac{1}{2} \\
x=0, x= \pm \frac{1}{\sqrt{2}}
\end{gathered}
$$

Let's verify that there are points in inflection

iv.

Concavity:
Concave downward when $\frac{d^{2} y}{d x^{2}}<0$

We already have the points where $\frac{d^{2} y}{d x^{2}}=0$
We put these on a number line and check the signs

$$
+ \text { means concave down }
$$

- means concave up

$$
\frac{d y}{d x}: x^{2}\left(x^{2}-1\right)
$$

Concave down when $x \leq-\frac{1}{\sqrt{2}}, 0<x<\frac{1}{\sqrt{2}}$

